If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+5t=1
We move all terms to the left:
t^2+5t-(1)=0
a = 1; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·1·(-1)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{29}}{2*1}=\frac{-5-\sqrt{29}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{29}}{2*1}=\frac{-5+\sqrt{29}}{2} $
| -3(y+6)+10=-8 | | 9x-5=12x+19 | | x-3=4(x+5) | | -12-m=2-8m | | 5y-11+13y+7=180 | | 19b-15=15+17b | | -8x-3=-16 | | X-7+2x-12=6 | | 22.5=x9 | | -2u+1/3=-1/4u-5/2 | | 7=-0.5x+3 | | -2(-9u+7)-5u=7(u-2)-4 | | x/3+1.8=3.8 | | (18y-6)+(14y+18)=180 | | 6t-5t=15 | | 8x-38=273 | | 5x+3=7x-37 | | 3z+8z=4 | | (x-8)/4=7 | | 2v-13+6=9 | | 8(m+6)=104 | | P=-50(x–3)^2+150. | | P=-50(x–3)2+150 | | 6+2m-10m=-4m-14 | | 4(1+3x)=-56 | | P=-50(x–3)2+150. | | f(54)=54/3+1 | | -72=3(-4x-8) | | 30+4x+4+90=180 | | 15=3(x−20) | | -4(x-2)+X=15 | | 7x+49=77 |